Identity of the $\operatorname{SU}(1,1)$ and $\mathrm{SU}(2)$ Clebsch-Gordan coefficients coupling unitary discrete representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 81038
(http://iopscience.iop.org/0305-4470/8/7/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:08

Please note that terms and conditions apply.

Identity of the $\mathbf{S U}(1,1)$ and $\mathbf{S U}(\mathbf{2})$ Clebsch-Gordan coefficients coupling unitary discrete representations

W Rasmussen
Erstes Physikalisches Institut, Universität zu Köln, 5 Köln 41, Federal Republic of Germany

Received 24 January 1975

Abstract

The Clebsch-Gordan (CG) coefficients coupling two positive discrete series or two negative discrete series of irreducible unitary representations (IUR) of $\operatorname{SU}(1,1)$ are shown to be identical to $\operatorname{SU}(2) \mathrm{CG}$ coefficients. The transformations changing the indices of the $\mathrm{SU}(1,1)$ CG coefficients into those of the identical $S U(2)$ cG coefficients are derived and shown to transform the $\operatorname{SU}(2)$ CG coefficients into $\operatorname{SU}(1,1)$ cG coefficients. The associated phases are discussed. General index transformations are derived and used to generate $\operatorname{SU}(2) \mathrm{CG}$ coefficient symmetries, among which are some of the more abstract Regge symmetries. A simple invariance property of the intermediate $\operatorname{SU}(1,1)$ CG coefficients is at the base of our symmetries. Our demonstrations are carried out with coexistent IUR of the tensor product groups $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ and $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ embedded in a simple encompassing group structure, the most degenerate discrete IUR of $\operatorname{SU}(2,2)$.

1. Introduction

The purpose of this paper is to prove that the $\mathrm{SU}(1,1)$ Clebsch-Gordan (CG) coefficients coupling two positive or two negative discrete series of irreducible unitary representations (IUR) are identical to $\mathrm{SU}(2) \mathrm{CG}$ coefficients. This result can be exploited for finding numerical values of these discrete series $\mathrm{SU}(1,1)$ CG coefficients by transforming their indices with (22) into $S U(2)$ indices and using the extensive tables of $S U(2)$ CG coefficients (Rotenberg et al 1959). As a by-product in the derivation of the general index transformations, we are able to shed some light on the abstract $\mathrm{SU}(2) \mathrm{CG}$ coefficient symmetries of Regge (1958).

Starting with Bargmann's (1947) article, the non-compact group $\operatorname{SO}(2,1)$ and its covering group $\operatorname{SU}(1,1)$ have been studied extensively in the mathematical physics literature. In particular, the CG coefficients coupling two discrete non-unitary, ie finite-dimensional, irreducible representations (IR) have been shown to be identical to SU(2) cG coefficients (Bargmann 1947, Holman and Biedenharn 1966). Since the SU(1, 1) and $\mathrm{SU}(2)$ Lie algebras have the same complex extension, this result is easily proved by placing the basis states of the non-unitary, finite-dimensional SU(1,1) IR in one-to-one correspondence with the states of $\operatorname{SU}(2)$ IUR of the same dimensions. Such a direct match with $\operatorname{SU}(2)$ IUR basis states clearly is impossible when considering the cG coefficients coupling discrete unitary, ie infinite-dimensional, IUR of $\operatorname{SU}(1,1)$. Thus, up
to now, the recognized connection between the $S U(1,1)$ and $S U(2)$ cg coefficients coupling discrete unitary IR is the analytic continuation in the representation parameters (Holman and Biedenharn 1966, Wang 1970).

By stepping away from the consideration of individual $\operatorname{SU}(1,1)$ and $\operatorname{SU}(2)$ iUR to a study of the IUR of the tensor product groups $\operatorname{SU}(1,1) \oplus \operatorname{SU}(1,1)$ and $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ defined on one general set of basis states, we can match the limited sets of $\operatorname{SU}(1,1)$ tensor product states appearing in the expansion of a discrete $\operatorname{SU}(1,1)$ IUR state with a corresponding set of $\mathrm{SU}(2)$ tensor product states appearing in the expansion of an $\mathrm{SU}(2)$ IUR state. The important point is that the two expansions, and thus the $\operatorname{SU}(1,1)$ and SU(2) CG coefficients, will be identical even if only the limited sets of states involved are identical. The most degenerate, discrete IUR of SU(2, 2) (Yao 1967, Barut and Böhm 1970) provide a natural structure in which this can be done. These $\operatorname{SU}(2,2)$ IUR have a physical significance as the generalized hydrogen atom or dyonium dynamical group IUR (Barut and Bornzin 1971, Barut et al 1974). In this physical picture, the $\operatorname{SU}(1,1)$ and $\mathrm{SU}(2) \mathrm{CG}$ coefficients turn out to be the basis transformation coefficients relating 'parabolic' to 'spherical' basis states, and the index transformations (22) are then just the notational transformations of these $\operatorname{SU}(2,2)$ states from an $\operatorname{SU}(1,1)$ representation parameter description to an $\mathrm{SU}(2)$ representation parameter description.

In the construction of our proofs, only the positive discrete series IUR of $\operatorname{SU}(1,1)$ will be used; a brief discussion of the negative discrete series IUR is included in § 7. In § 2, the encompassing group structure of the most degenerate discrete IUR of $\operatorname{SU}(2,2)$ is sketched. The $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ and $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ IUR embedded in this structure are presented next, in $\S \S 3$ and 4 respectively. In $\S 5.1$, the CG coefficients and the index transformation, along with a brief discussion of phases, are presented. In § 5.2, the general index transformations are derived. These lead, as discussed in $\S 6$, to $\mathrm{SU}(2)$ cG symmetries, some of which are Regge symmetries.

2. The group $\mathbf{S U}(\mathbf{2}, \mathbf{2})$

The group $\operatorname{SU}(2,2)$ (Yao 1967) is locally isomorphic to the group $\mathrm{O}(4,2)$, and can be generated by the Lie algebra of antisymmetric tensors $J_{\alpha \beta}$, where α and β take values from the set $(1, \ldots, 6) . J_{\alpha \beta}$ satisfy the commutation rules

$$
\begin{equation*}
\left[J_{\alpha \beta}, J_{\gamma \beta}\right]=-i g_{\beta \beta} J_{a \gamma} \tag{1}
\end{equation*}
$$

where $g_{\alpha \beta}$ is a diagonal metric tensor with the elements $g_{11}=g_{22}=g_{33}=g_{44}=-1$ and $g_{55}=g_{66}=+1$. The oscillator or boson realization of the most degenerate discrete IUR of $\operatorname{SU}(2,2)$ can be constructed with the four pairs $\left(a_{1}^{\dagger}, a_{1}\right),\left(a_{2}^{\dagger}, a_{2}\right),\left(b_{1}^{\dagger}, b_{1}\right)$ and $\left(b_{2}^{\dagger}, b_{2}\right)$ of boson creation and annihilation operators satisfying

$$
\left[a_{r}^{\dagger}, a_{s}\right]=\left[b_{r}^{\dagger}, b_{s}\right]=\delta_{r s} .
$$

If we define the usual Pauli matrices and a matrix C by

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad C=\mathrm{i} \sigma_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

then the generators $J_{\alpha \beta}$ can be written in a two-dimensional spinor notation as

$$
\begin{align*}
& J_{i j}=\frac{1}{2} \epsilon_{i j k}\left(a^{\dagger} \sigma_{k} a+b^{\dagger} \sigma_{k} b\right) \\
& J_{k 4}=-\frac{1}{2}\left(a^{\dagger} \sigma_{k} a-b^{\dagger} \sigma_{k} b\right) \\
& J_{i 5}=-\frac{1}{2}\left(a^{\dagger} \sigma_{i} C b^{\dagger}-a C \sigma_{i} b\right) \\
& J_{i 6}=-\frac{1}{2} \mathrm{i}\left(a^{\dagger} \sigma_{i} C b^{\dagger}+a C \sigma_{i} b\right) \tag{2}\\
& J_{45}=-\frac{1}{2} \mathrm{i}\left(a^{\dagger} C b^{\dagger}-a C b\right) \\
& J_{46}=\frac{1}{2}\left(a^{\dagger} C b^{\dagger}+a C b\right) \\
& J_{56}=\frac{1}{2}\left(a^{\dagger} a+b^{\dagger} b+2\right)
\end{align*}
$$

where i and j take the values 1,2 , and 3 . The most degenerate discrete (dyonium) IUR of $\operatorname{SU}(2,2)$ are uniquely labelled by the eigenvalues μ of the operator S :

$$
\begin{equation*}
S \equiv \frac{1}{2}\left(a^{\dagger} a-b^{\dagger} b\right)=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}-b_{1}^{\dagger} b_{1}-b_{2}^{\dagger} b_{2}\right) . \tag{3}
\end{equation*}
$$

S commutes with all generators $J_{\alpha \beta}$ of the $\operatorname{SU}(2,2)$ Lie algebra (2). The orthonormal 'parabolic' basis states are the eigenstates of the operator S together with the three commuting generators J_{12}, J_{56}, J_{34} of the Cartan subalgebra. The diagonalization of $S, J_{12}, J_{56}, J_{34}$ is, as can easily be seen by taking their linear combinations, equivalent to the diagonalization of the four number operators $a_{1}^{\dagger} a_{1}, a_{2}^{\dagger} a_{2}, b_{1}^{\dagger} b_{1}$, and $b_{2}^{\dagger} b_{2}$. Thus, orthogonal 'parabolic' basis states are simply products of monomials in $a_{1}^{\dagger}, a_{2}^{\dagger}, b_{1}^{\dagger}$, and b_{2}^{\dagger}. When defining the general index transformations, we shall use the number operators. We write the 'parabolic' basis states as $|\mu, m, n, \alpha\rangle$, where the labels (μ, m, n, α) are the eigenvalues, in the same order, of the set of operators ($S, J_{12}, J_{56}, J_{34}$). The 'spherical' basis states will be defined later, in conjunction with the CG coefficients.

3. The tensor product group $\mathbf{S U (2) \oplus} \oplus \mathbf{S U}(\mathbf{2})$

The $\mathrm{SU}(2,2)$ tensor product subgroup $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$, which is locally isomorphic to $O(4)$, is generated by the subalgebra $J_{\alpha \beta}$, where (α, β) take their values from the set $(1,2,3,4)$. From (2), the generators of the two $\mathrm{SU}(2)$ groups composing the $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ are easily seen to be

$$
\begin{equation*}
\left(J_{1}\right)_{i j}=\frac{1}{2} \epsilon_{i j k}\left(a^{\dagger} \sigma_{k} a\right), \quad\left(J_{2}\right)_{i j}=\frac{1}{2} \epsilon_{i j k}\left(b^{\dagger} \sigma_{k} b\right) . \tag{4}
\end{equation*}
$$

Here i, j, and k take values from 1 to 3 . With $(J)_{i j}=\epsilon_{i j k}(J)_{k}$, the $\operatorname{SU}(2)$ Casimir invariants $Q \equiv J^{2}$ are defined by

$$
\begin{equation*}
Q \equiv(J)^{2}=\frac{1}{2} \sum g^{i j} g^{k l} J_{i k} J_{j l}=(J)_{1}^{2}+(J)_{2}^{2}+(J)_{3}^{2} \tag{5}
\end{equation*}
$$

An IUR of $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ can be constructed by taking the tensor product of a spin j_{1} with a spin $j_{2} \mathrm{SU}(2)$ IUR ; a complete set of $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ IUR basis states are then :
$\left|j_{1} m_{1} j_{2} m_{2}\right\rangle=\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=N_{j_{1} m_{1}} a_{1}^{\dagger j_{1}+m_{1}} a_{2}^{j_{1}-m_{1}} N_{j_{2} m_{2}} b_{1}^{\dagger j_{2}+m_{2}} b_{2}^{\dagger j_{2}-m_{2}}|0\rangle$
with $N_{j m}^{-2}=[(j+m)!(j-m)!]$. The action of the raising and lowering operators
$\left(J_{r}\right)^{ \pm}=\left(J_{r}\right)_{1} \pm i\left(J_{r}\right)_{2}$, of $\left(J_{r}\right)_{3}$, and of the Casimirs on (6) are

$$
\begin{align*}
& \left(J_{1}\right)^{ \pm}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle=\left[\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)\right]^{1 / 2}\left|j_{1}, m_{1} \pm 1, j_{2} m_{2}\right\rangle \\
& \left(J_{2}\right)^{ \pm}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle=\left[\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)\right]^{1 / 2}\left|j_{1} m_{1}, j_{2}, m_{2} \pm 1\right\rangle \tag{7}\\
& \left(J_{r}\right)_{3}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle=m_{r}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle \\
& \left(J_{r}\right)^{2}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle=j_{r}\left(j_{r}+1\right)\left|j_{1} m_{1} j_{2} m_{2}\right\rangle .
\end{align*}
$$

Since the states $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$ are simply products of monomials of the four boson raising operators, they are identical to the $\operatorname{SU}(2,2)$ 'parabolic' basis states $\langle\mu, m, n, \alpha\rangle$, if the operators of the set $\left(S, J_{12}, J_{56}, J_{34}\right)$ have matching eigenvalues on both states :

$$
\begin{align*}
& \mu=j_{1}-j_{2} \\
& m=m_{1}+m_{2} \tag{8}\\
& n=j_{1}+j_{2}+1 \\
& \alpha=m_{2}-m_{1} .
\end{align*}
$$

These relations define the index transformation from the $\operatorname{SU}(2,2)$ 'parabolic' state notation to the $S U(2)$ tensor product notation. All $S U(2) \oplus S U(2)$ IUR satisfying the condition $\mu=j_{1}-j_{2}$ are contained once in one $\operatorname{SU}(2,2)$ spin μ IUR.

The alternate $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ IUR basis states corresponding to the 'spherical' basis states are defined by the canonical reduction chain

$$
\begin{equation*}
S U(2) \oplus S U(2) \supset S U(2) \supset S U(1) \tag{9}
\end{equation*}
$$

The SU(2) CG coefficients will satisfy the Condon-Shortley phase convention (Edmonds 1957) if the $S U(2)$ subgroup generated by (J_{12}, J_{31}, J_{23}) and the $\mathrm{SU}(1)$ subgroup generated by J_{12} are chosen for this chain. The generators of the $\mathbf{S U}(2)$ reduction chain group are

$$
\begin{align*}
& J_{23}=J_{1}=\left(J_{1}\right)_{1}+\left(J_{2}\right)_{1} \\
& J_{13}=J_{2}=\left(J_{1}\right)_{2}+\left(J_{2}\right)_{2} \tag{10}\\
& J_{12}=J_{3}=\left(J_{1}\right)_{3}+\left(J_{2}\right)_{3}
\end{align*}
$$

The new states $\left|\left(j_{1} j_{2}\right) j m\right\rangle$, transforming as IUR states of $\operatorname{SU}(2)$, are related to the tensor product states (6) by the unitary transformation defining $\operatorname{SU}(2)$ CG coefficients:

$$
\begin{equation*}
\left|\left(j_{1} j_{2}\right) j m\right\rangle=\sum_{m_{1} m_{2}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid\left(j_{1} j_{2}\right) j m\right\rangle\left|j_{1} m_{1} j_{2} m_{2}\right\rangle \delta_{m_{1}+m_{2}, m} \tag{11}
\end{equation*}
$$

The eigenvalues $j(j+1)$ of the Casimir operator $Q=J^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2}$ are constrained to the usual range $\left|j_{1}-j_{2}\right| \leqslant j \leqslant j_{1}+j_{2}$. The set of operators (S, J_{12}, J_{36}, J^{2}), where J^{2} has taken the place of the generator J_{34}, forms an alternate complete set of commuting $\operatorname{SU}(2,2)$ operators. The eigenstates are defined to be the 'spherical' basis states $|\mu, m, n ; j(j+1)\rangle$. The expansion (11) of $\left|\left(j_{1} j_{2}\right) j m\right\rangle$ in terms of the states $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$ can then be written as the expansion of the 'spherical' states in terms of the 'parabolic' states with the help of the index transformation (8):

$$
\begin{equation*}
|\mu, m, n ; j(j+1)\rangle=\sum_{\alpha}\langle\mu, m, n, \alpha \mid \mu, m, n ; j(j+1)\rangle|\mu, m, n, \alpha\rangle . \tag{12}
\end{equation*}
$$

4. The tensor product group $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$

The $\operatorname{SU}(2,2)$ tensor product subgroup $\mathrm{SU}(1,1) \oplus \operatorname{SU}(1,1)$, which is locally isomorphic to $O(2,2)$, can be generated by the subalgebra $J_{\alpha \beta}$, where (α, β) take their values from the set $(3,4,5,6)$. A study of the $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ Lie algebra reveals that the two $\mathrm{SU}(1,1)$ subgroups composing the tensor product group are generated by

$$
\begin{array}{ll}
\left(N_{1}\right)_{1}=\frac{1}{2}\left(b_{1}^{\dagger} a_{2}^{\dagger}+b_{1} a_{2}\right) ; & \left(N_{2}\right)_{1}=\frac{1}{2}\left(a_{1}^{\dagger} b_{2}^{\dagger}+a_{1} b_{2}\right) \\
\left(N_{1}\right)_{2}=-\frac{1}{2}\left(b_{1}^{\dagger} a_{2}^{\dagger}-b_{1} a_{2}\right), & \left(N_{2}\right)_{2}=-\frac{1}{2} \mathrm{i}\left(a_{1}^{\dagger} b_{2}^{\dagger}-a_{1} b_{2}\right) \tag{13}\\
\left(N_{1}\right)_{3}=\frac{1}{2}\left(b_{1}^{\dagger} b_{1}+a_{2}^{\dagger} a_{2}+1\right) ; & \left(N_{2}\right)_{3}=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}+b_{2}^{\dagger} b_{2}+1\right) .
\end{array}
$$

With the identifications $\left(N_{r}\right)_{i j}=\epsilon_{i j k}\left(N_{r}\right)_{k}$, the Lie algebras (13) satisfy the usual $\operatorname{SU}(1,1)$ commutation rules (Bargmann 1947)

$$
\left[\left(N_{r}\right)_{i j},\left(N_{s}\right)_{i k}\right]=-\mathrm{i} \delta_{r s} g_{i i}^{\prime}\left(N_{r}\right)_{j k}
$$

The diagonal metric tensor $g_{i j}^{\prime}$ takes the values $g_{11}^{\prime}=g_{22}^{\prime}=-1$ and $g_{33}^{\prime}=+1$, reflecting the local isomorphism of $\operatorname{SU}(1,1)$ with $\operatorname{SO}(2,1)$. The $\mathrm{SU}(1,1)$ Casimir operators $Q \equiv K^{2}$ are defined by

$$
\begin{equation*}
Q \equiv(K)^{2}=\frac{1}{2} \sum g^{i j} g^{\prime l k}(N)_{i l}(N)_{j k}=(N)_{3}^{2}-(N)_{1}^{2}-(N)_{2}^{2} \tag{14}
\end{equation*}
$$

The basis states of an $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ IUR can be constructed by taking the tensor product of a k_{1} with a k_{2} positive discrete series IUR:
$\left|k_{1} n_{1} k_{2} n_{2}\right\rangle=\left|k_{1} n_{1}\right\rangle\left|k_{2} n_{2}\right\rangle=N_{k_{1} n_{1}} b_{1}^{+n_{1}+k_{1}-1} a_{2}^{\dagger n_{1}-k_{1}} N_{k_{2} n_{2}} a_{1}^{\dagger n_{2}+k_{2}-1} b_{2}^{\dagger n_{2}-k_{2}}|0\rangle$
with $N_{k n}^{-2}=[(n+k-1)!(n-k)!]$. The action of the generators $(N)^{ \pm}=(N)_{1} \pm \mathrm{i}(N)_{2}$ and $(N)_{3}$, and of the Casimirs on (15) are

$$
\begin{align*}
& \left(N_{1}\right)^{ \pm}\left|k_{1} n_{1} k_{2} n_{2}\right\rangle=\left[\left(n_{1} \pm k_{1}\right)\left(n_{1} \mp k_{1} \pm 1\right)^{1 / 2}\left|k_{1}, n_{1} \pm 1, k_{2} n_{2}\right\rangle\right. \\
& \left(N_{2}\right)^{ \pm}\left|k_{1} n_{1} k_{2} n_{2}\right\rangle=\left[\left(n_{2} \pm k_{2}\right)\left(n_{2} \mp k_{2} \pm 1\right)\right]^{1 / 2}\left|k_{1} n_{1}, k_{2}, n_{2} \pm 1\right\rangle \\
& \left(N_{r}\right)_{3}\left|k_{1} n_{1} k_{2} n_{2}\right\rangle=n_{r}\left|k_{1} n_{1} k_{2} n_{2}\right\rangle \tag{16}\\
& K_{r}^{2}\left|k_{1} n_{1} k_{2} n_{2}\right\rangle=k_{r}\left(k_{r}-1\right)\left|k_{1} n_{1} k_{2} n_{2}\right\rangle .
\end{align*}
$$

The representation labels $2 k_{r}$ are nonzero positive integers, and the state labels n_{r} can take all values from k_{r} to plus infinity in positive integer steps.

Since the states (15) are also simply products of monomials of the boson raising operators, they are identical to the $\operatorname{SU}(2,2)$ 'parabolic' states $|\mu, m, n, \alpha\rangle$ whenever the set of operators ($S, J_{12}, J_{56}, J_{34}$) has matching eigenvalues on both states:

$$
\begin{align*}
\mu^{\prime} & =k_{2}-k_{1} \\
m^{\prime} & =k_{1}+k_{2}-1 \tag{17}\\
n^{\prime} & =n_{1}+n_{2} \\
\alpha^{\prime} & =n_{1}-n_{2} .
\end{align*}
$$

These relations represent the index transformations from an $\operatorname{SU}(2,2)$ 'parabolic' state notation to the $\mathrm{SU}(1,1)$ tensor product notation.

The alternate set of $S U(1,1) \oplus S U(1,1)$ states, ie states corresponding to 'spherical' basis states, are defined by the canonical reduction chain

$$
\begin{equation*}
\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1) \supset \mathrm{SU}(1,1) \supset \mathrm{SU}(1) \tag{18}
\end{equation*}
$$

If this chain is to define the $\operatorname{SU}(2,2)$ 'spherical' basis states (12), then the $\operatorname{SU}(1,1)$ in the chain must have its Casimir K^{2} equal to the $\mathrm{SU}(2)$ Casimir J^{2} (associated with (11)), and must contain the $\mathrm{SU}(1)$ subgroup generated by J_{56}. The special $\mathrm{SU}(1,1)$ subgroup satisfying these demands is the so called 'transition' subgroup (eg Kleinert 1968), generated by J_{46}, J_{45} and J_{56}. Its generators are, in terms of (13),

$$
\begin{align*}
& J_{46}=N_{1}=-\left(N_{1}\right)_{1}+\left(N_{2}\right)_{1} \\
& J_{45}=N_{2}=-\left(N_{1}\right)_{2}+\left(N_{2}\right)_{2} \tag{19}\\
& J_{56}=N_{3}=+\left(N_{1}\right)_{3}+\left(N_{2}\right)_{3} .
\end{align*}
$$

The minus signs associated with the $\left(N_{1}\right)$ algebra reflect the special choice of $\operatorname{SU}(1,1)$ necessary, so that $K^{2}=J^{2}$. The new states $\left|\left(k_{1} k_{2}\right) k n\right\rangle$, with K^{2} and $J_{56}=N_{3}$ diagonal and transforming as positive discrete series $\mathrm{SU}(1,1)$ IUR states, are related to the states (15) by the unitary transformation defining $\operatorname{SU}(1,1)$ CG coefficients:

$$
\begin{equation*}
\left|\left(k_{1} k_{2}\right) k n\right\rangle=\sum_{n_{1} n_{2}}\left\langle k_{1} n_{1} k_{2} n_{2} \mid\left(k_{1} k_{2}\right) k n\right\rangle\left|k_{1} n_{1} k_{2} n_{2}\right\rangle \delta_{n_{1}+n_{2}, n} . \tag{20}
\end{equation*}
$$

The eigenvalues $k(k-1)$ of K^{2} are $k=k_{1}+k_{2}+I$, where I is zero or a positive integer. The $\operatorname{SU}(2,2)$ operators S, J_{12}, and J_{56}, along with the operator K^{2}, are diagonal on (20). Since $J^{2}=K^{2}$, the same set of operators which define the 'spherical' states (12) is diagonal on (20); thus, (20) are actually $S U(2,2)$ 'spherical' basis states $\left|\mu^{\prime}, m^{\prime}, n^{\prime} ; k(k-1)\right\rangle$. With the help of the index transformation (17), we can write (20) in an $\operatorname{SU}(2,2)$ notation as

$$
\begin{equation*}
\left|\mu^{\prime}, m^{\prime}, n^{\prime} ; k(k-1)\right\rangle=\sum_{\alpha^{\prime}}\left\langle\mu^{\prime}, m^{\prime}, n^{\prime}, \alpha^{\prime} \mid \mu^{\prime}, m^{\prime}, n^{\prime} ; k(k-1)\right\rangle\left|\mu^{\prime}, m^{\prime}, n^{\prime}, \alpha^{\prime}\right\rangle \tag{21}
\end{equation*}
$$

5. The cG coefficients and the general index transformations

5.1. The CG coefficients

The reason for writing the $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ IUR basis transformations (11) and the $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ IUR basis transformations (20) as basis transformations from the 'parabolic' to the 'spherical' states in an encompassing SU(2,2) IUR ((12) and (21)) should be clear. The SU(2) cG coefficients in (11) and (12)

$$
\left\langle j_{1} m_{1} j_{2} m_{2} \mid\left(j_{1} j_{2}\right) j m\right\rangle=\langle\mu, m, n, \alpha \mid \mu, m, n ; j(j+1)\rangle
$$

and the $\operatorname{SU}(1,1)$ CG coefficients in (20) and (21)

$$
\left\langle k_{1} n_{1} k_{2} n_{2} \mid\left(k_{1} k_{2}\right) k n\right\rangle=\left\langle\mu^{\prime}, m^{\prime}, n^{\prime}, \alpha^{\prime} \mid \mu^{\prime}, m^{\prime}, n^{\prime} ; k(k-1)\right\rangle
$$

are identical if the $\operatorname{SU}(2,2)$ states are identical, ie if the $\operatorname{SU}(2,2)$ labels $\mu=\mu^{\prime}, m=m^{\prime}$, $n=n^{\prime}, \alpha=\alpha^{\prime}$, and $j=k-1$ are. Since any IUR of the tensor product group $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ formed from two arbitrary positive discrete $\mathrm{SU}(1,1)$ IUR can be accommodated in one of the most degenerate discrete IUR of $\operatorname{SU}(2,2)$, we have proved in general, that the CG coefficients coupling any two positive discrete IUR of $\operatorname{SU}(1,1)$
are identical to $\mathrm{SU}(2)$ cG coefficients. The index transformations relating the $\mathrm{SU}(1,1) \mathrm{CG}$ coefficients' indices to the $S U(2)$ cG coefficients' indices are formed from the two individual index transformations (8) and (17) by setting the corresponding $\operatorname{SU}(2,2)$ parameters equal. Thus, the CG coefficients

$$
\left\langle k_{1} n_{1} k_{2} n_{2} \mid\left(k_{1} k_{2}\right) k n\right\rangle=\left\langle j_{1} m_{1} j_{2} m_{2} \mid\left(j_{1} j_{2}\right) j m\right\rangle
$$

if the $S U(2)$ indices are

$$
\begin{align*}
& j_{1}=\frac{1}{2}\left(n_{1}+n_{2}+k_{2}-k_{1}-1\right) \\
& j_{2}=\frac{1}{2}\left(n_{1}+n_{2}+k_{1}-k_{2}-1\right) \\
& m_{1}=\frac{1}{2}\left(n_{2}-n_{1}+k_{2}+k_{1}-1\right) \\
& m_{2}=\frac{1}{2}\left(n_{1}-n_{2}+k_{2}+k_{1}-1\right) \tag{22}\\
& j=k-1 \\
& m=k_{1}+k_{2}-1
\end{align*}
$$

By transforming the indices of an $\mathrm{SU}(2) \mathrm{CG}$ coefficient (Edmonds 1957, p 45, equation (3.6.11)) with (22), the $S U(1,1)$ cG coefficients can be derived. We find

$$
\begin{align*}
&\left\langle k_{1} n_{1} k_{2} n_{2} \mid\left(k_{1} k_{2}\right) k n\right\rangle \\
&=(-1)^{n_{1}-k_{1}}\left[(2 k-1)\left(k-k_{1}-k_{2}\right)!\left(k+k_{1}-k_{2}-1\right)!\left(k+k_{2}-k_{1}-1\right)!\right. \\
& \times\left(k+k_{1}+k_{2}-2\right)!(n-k)!\left(n_{1}-k_{1}\right)!\left(n_{1}+k_{1}-1\right)!\left(n_{2}-k_{2}\right)! \\
&\left.\times\left(n_{2}+k_{2}-1\right)!/(n+k-1)!\right]^{1 / 2} \sum_{\beta}(-1)^{\beta}\left[\beta!\left(k-k_{1}-k_{2}-\beta\right)!\right. \\
&\left.\times\left(n_{1}-k_{1}-\beta\right)!\left(n-k-n_{1}+k_{1}+\beta\right)!\left(2 k_{1}+\beta-1\right)!\left(k-k_{1}+k_{2}-\beta-1\right)!\right]^{-1} . \tag{23}
\end{align*}
$$

Apart from the phase factor $(-1)^{n_{1}-k_{1}}$, our CG coefficient agrees with the result of Sannikov (1967). The phase factor has its origin in the particular choice of $\operatorname{SU}(1,1)$ canonical chain reduction subgroup. The minus signs associated with $\left(N_{1}\right)_{1}$ and $\left(N_{1}\right)_{2}$ in the $S U(1,1)$ generators (19) are responsible, as we have checked by carrying through Sannikov's calculation with our phase choice. These minus signs, and thus our phase factor, can be removed by picking an alternate pair of $\mathrm{SU}(1,1)$ and $\mathrm{SU}(2)$ reduction chain subgroups. For example, the $\operatorname{SU}(1,1)$ subgroup generated by $\left(J_{56}, J_{35}, J_{36}\right)$ has the desired plus signs in its generators. However, its complementary $\operatorname{SU}(2)$ subgroup, a subgroup with $J^{2}=K^{2}$ and $J_{3}=J_{12}$, is the $\operatorname{SU}(2)$ generated by $\left(J_{12}, J_{14}, J_{24}\right)$, which has minus signs associated with its $\left(J_{1}\right)_{1}$ and $\left(J_{1}\right)_{2}$ (see (10)). The $\operatorname{SU}(2)$ generators, thus, do not satisfy the Condon-Shortley phase conventions (Edmonds 1957); the SU(2) cG coefficients, corresponding to the $S U(1,1)$ cG coefficients without a phase factor, have the extra phase factor $(-1)^{j_{1}-m_{1}}$. The algebraic framework of the $\operatorname{SU}(2,2)$ IUR, thus, forces this complementary phase behaviour on the CG coefficients.

5.2. The general index transformations

Our discussion of the index transformations has been concerned thus far strictly with transforming from an arbitrary $\mathbf{S U}(1,1)$ CG coefficient to an $\mathbf{S U}(2)$ cG coefficient. The
reverse, from an arbitrary $\operatorname{SU}(2)$ CG coefficient to an $\mathrm{SU}(1,1)$ CG coefficient needs more care, as different domains of the $\mathrm{SU}(2)$ indices need different index transformations. We can see this most simply by directly comparing the powers of the monomials of the boson creation operators in the $S U(1,1) \oplus S U(1,1)$ states (15) with those in the $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ states (6). The representation defining conditions $n_{r} \geqslant k_{r} \geqslant \frac{1}{2}$ for the $\operatorname{SU}(1,1)$ IUR, restricts the domains of the $\operatorname{SU}(2)$ IUR parameters for which the states (15) and (6) can be identical. For identical states, the inequalities imply that the exponents

$$
\begin{align*}
& n_{1}+k_{1}-1=j_{2}+m_{2} \geqslant j_{1}-m_{1}=n_{1}-k_{1} \tag{24}\\
& n_{2}+k_{2}-1=j_{1}+m_{1} \geqslant j_{2}-m_{2}=n_{2}-k_{2}
\end{align*}
$$

Defining $\mu=j_{1}-j_{2}$ and $m=m_{1}+m_{2}$, these inequalities can be written as

$$
m \equiv m_{1}+m_{2} \geqslant|\mu| \geqslant 0
$$

This is the $\operatorname{SU}(2)$ parameter domain for which the index transformation (22) is valid. For other $\operatorname{SU}(2)$ representation parameter domains differently constructed $\operatorname{SU}(1,1)$ tensor product states are needed, so that different exponent associations than in (24) must be made. The $\operatorname{SU}(1,1)$ Lie algebras (13) are invariant under the interchange of $\left(b_{1}^{\dagger}, b_{1}\right)$ with $\left(a_{2}^{\dagger}, a_{2}\right)$, and of $\left(a_{1}^{\dagger}, a_{1}\right)$ with $\left(b_{2}^{\dagger}, b_{2}\right)$; consequently, the exponents of the boson creation operators b_{1}^{\dagger} and a_{2}^{\dagger}, and of a_{1}^{\dagger} and b_{2}^{\dagger}, can be interchanged in the $\operatorname{SU}(1,1)$ tensor product states (15) without changing the Lie algebra definitions (16). With the possibility of permuting the exponents in (15), $\mathrm{SU}(1,1)$ tensor product states can be constructed for all $\mathrm{SU}(2)$ parameter domains. We find four inequivalent $\mathrm{SU}(2)$ parameter domains:

$$
\begin{equation*}
m \geqslant|\mu|, \quad \mu=|\mu| \geqslant m \geqslant-|\mu|, \quad-\mu=|\mu| \geqslant m \geqslant-|\mu|, \quad m \leqslant-|\mu| . \tag{25}
\end{equation*}
$$

The index transformations can, as is illustrated by (24), be directly read off from the exponents. In the sequence of parameter domains adopted in (25), the general index transformations are

$$
\begin{align*}
& j_{1}+m_{1}=\left(n_{2}+k_{2}-1, n_{2}+k_{2}-1, n_{2}-k_{2}, n_{2}-k_{2}\right) \\
& j_{1}-m_{1}=\left(n_{1}-k_{1}, n_{1}+k_{1}-1, n_{1}-k_{1}, n_{1}+k_{1}-1\right) \\
& j_{2}+m_{2}=\left(n_{1}+k_{1}-1, n_{1}-k_{1}, n_{1}+k_{1}-1, n_{1}-k_{1}\right) \tag{26}\\
& j_{2}-m_{2}=\left(n_{2}-k_{2}, n_{2}-k_{2}, n_{2}+k_{2}-1, n_{2}+k_{2}-1\right) \\
& j=k-1 .
\end{align*}
$$

The first column corresponds to the domain $m \geqslant|\mu|$, and is the index transformation (22). All of these index transformations lead to the same $\operatorname{SU}(1,1)$ CG coefficient, since the $\mathrm{SU}(1,1)$ Lie algebras are invariant under the permutations.

6. The CG coefficient symmetries

By branching from one $\operatorname{SU}(1,1)$ cG coefficient with the four index transformations (26) to four identical, but differently labelled, $\operatorname{SU}(2)$ cG coefficients, we are led to six $\operatorname{SU}(2)$ cG symmetry transformations. The two symmetry transformations from the $\mathrm{SU}(2)$ parameter
domains $m \geqslant|\mu|$ to $-|\mu| \geqslant m$, and from $\mu=|\mu| \geqslant m \geqslant-|\mu|$ to $-\mu=|\mu| \geqslant m \geqslant-|\mu|$, are equivalent to the reversal of the coupling order of the spins j_{1} and j_{2} and the transformation of m_{1} and m_{2} into $-m_{1}$ and $-m_{2}$ in the $\mathrm{SU}(2)$ CG coefficient. This is one of the standard symmetries (eg Edmonds 1957). The four symmetry transformations from the $\operatorname{SU}(2)$ parameter domains $|m| \geqslant|\mu|$ to the domains $|\mu| \geqslant m \geqslant-|\mu|$, however, are not any of the standard symmetries, but are among the abstract algebraic symmetries discovered by Regge (1958). On writing the SU(2) cG coefficients in terms of the Regge square symbol, these transformations are seen to be equivalent to the symmetry transformation corresponding to the interchange of the symbol's rows with its columns, ie symmetry c of Regge's original paper.

In terms of the boson realizations, the origin of these symmetries lies in the invariance of the $\mathrm{SU}(1,1)$ Lie algebra relations (16) under the permutations of the exponents of the boson raising operators in each $\operatorname{SU}(1,1)$ IUR of the tensor product state (15). From a model-independent viewpoint, these permutational invariances are equivalent to the invariance of the Lie algebra relations (16) when the Casimir invariant k_{r} is replaced by $1-k_{r}$; the $\mathrm{SU}(1,1)$ CG coefficients are then, of course, also invariant with respect to this replacement. We can thus say, that our $\operatorname{SU}(2)$ CG coefficient symmetries, including symmetry c of Regge's paper (1958), are a consequence of the invariance of the interrelating $\operatorname{SU}(1,1)$ CG coefficients under the replacements of k_{r} by $1-k_{r}$.

7. The negative discrete series

Our discussion has dealt exclusively with the positive discrete series IUR of $\operatorname{SU}(1,1)$. Our algebraic frame is, however, equally well suited for treating the negative discrete series IUR. The $\operatorname{SU}(2,2)$ Lie algebra (2) can be converted into one appropriate for the negative discrete IUR by simply multiplying the boson definitions of the $\operatorname{SU}(2,2)$ generators $J_{\alpha 5}$ in (2) with -1 . This operation leaves the $\mathrm{SU}(2) \oplus \mathrm{SU}(2)$ subalgebra invariant and affects only the $\mathrm{SU}(1,1) \oplus \mathrm{SU}(1,1)$ subalgebra. The $\mathrm{SU}(1,1)$ subalgebras (13) composing the tensor product have their boson definitions of $\left(N_{r}\right)_{2}$ and of $\left(N_{r}\right)_{3}$ changed into their negative. The effect of this replacement is that the eigenvalues of $\left(N_{r}\right)_{3}$ on a boson creation operator basis state are negative, and that the boson definitions of the raising and lowering operators $\left(N_{r}\right)^{ \pm}$are, correspondingly, interchanged. The subalgebras $\left(N_{r}\right)_{i}$ have become those for negative discrete iUR. Furthermore, the Casimirs are unchanged, so that the positive discrete series tensor product states $\left|k_{1} n_{1} k_{2} n_{2}\right\rangle(15)$ are now the negative discrete series tensor product states $\left|k_{1},-n_{1}, k_{2},-n_{2}\right\rangle$, as labelled by (16). Since the Casimir of the spherical basis states is unchanged, ie $K^{2}=J^{2}$, the boson definitions of the positive discrete series IUR states $\left|\left(k_{1} k_{2}\right) k n\right\rangle$ and the negative discrete series states $\left|\left(k_{1} k_{2}\right) k-n\right\rangle$ are unchanged. Except for notation, the positive discrete states and the negative discrete states are identical, so that the $\operatorname{SU}(1,1) \mathrm{CG}$ coefficients defined by (20) are the negative discrete CG coefficients also, and thus identical to $\mathrm{SU}(2) \mathrm{CG}$ coefficients.

Acknowledgments

The author wishes to thank Dr A O Barut, Dr A Bhattacharya, Dr B R Judd and Dr S Salamó for valuable discussions, and the Alexander von Humboldt-Stiftung for a fellowship.

References

Bargmann V 1947 Ann. Math., NY 48568
Barut A O and Böhm A 1970 J. Math. Phys. 11 2938-45
Barut A O and Bornzin G 1971 J. Math. Phys. 12 841-6
Barut A O, Rasmussen W and Salamó S 1974 Phys. Rev. D 10 622-9, 630-5
Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press)
Holman W J and Biedenharn L C 1966 Ann. Phys., NY 39 1-42
Kleinert H 1968 Lectures in Theoretical Physics vol 10B eds W Brittin et al (New York: Gordon and Breach) p 427
Regge T 1958 Nuovo Cim. 10 544-5
Rotenberg M, Bivins R, Metropolis N and Wooten J K 1959 The $3-j$ and $6-j$ symbols (Cambridge, Mass.: Technology Press)
Sannikov S S 1967 Sov. Phys.-Dokl. 11 1045-7
Wang K H 1970 J. Math. Phys. 11 2077-95
Yao T 1967 J. Math. Phys. 81931

