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Identity of the SU(1,l) and SU(2) Clebscb-Gordan 
coefficients coupling unitary discrete representations 

W Rasmussen 
Erstes Physikalisches Institut, Universitat zu Koln, 5 Koln 41, Federal Republic of Germany 

Received 24 January 1975 

Abstract. The Clebsch-Gordan (CG) coefficients coupling two positive discrete series or two 
negative discrete series of irreducible unitary representations (IUR) of SU(1,l) are shown to 
be identical to SU(2) CG coefficients. The transformations changing the indices of the SU(1, 1 )  
CG coefficients into those of the identical SU(2) CG coefficients are derived and shown to 
transform the SU(2) CG coefficients into SU (1 ,  1 )  CG coefficients. The associated phases are 
discussed. General index transformations are derived and used to generate SU(2) CG 
coefficient symmetries, among which are some of the more abstract Regge symmetries. A 
simple invariance property of the intermediate SU(1,l)  CG coefficients is at the base of our 
symmetries. Our demonstrations are carried out with coexistent IUR of the tensor product 
groups SU(1, I)$SU(I, 1) and SU(2)$SU(2) embedded in a simple encompassing group 
structure, the most degenerate discrete IUR of SU(2,2). 

1. Introduction 

The purpose of this paper is to prove that the SU(1,l) Clebsch-Gordan (CG) coefficients 
coupling two positive or two negative discrete series of irreducible unitary representa- 
tions (IUR) are identical to SU(2) CG coefficients. This result can be exploited for finding 
numerical values of these discrete series SU(1, 1) CG coefficients by transforming their 
indices with (22) into SU(2) indices and using the extensive tables of SU(2) CG coefficients 
(Rotenberg et a1 1959). As a by-product in the derivation of the general index trans- 
formations, we are able to shed some light on the abstract SU(2) CG coefficient symmetries 
of Regge (1958). 

Starting with Bargmann’s (1947) article, the non-compact group SO(2, 1)  and its 
covering group SU( 1 , l )  have been studied extensively in the mathematical physics 
literature. In particular, the CG coefficients coupling two discrete non-unitary, ie 
finite-dimensional, irreducible representations (IR) have been shown to be identical to 
SU(2) CG coefficients (Bargmann 1947, Holman and Biedenharn 1966). Since the SU(1,l) 
and SU(2) Lie algebras have the same complex extension, this result is easily proved by 
placing the basis states of the non-unitary, finite-dimensional SU(1, 1) IR in one-to-one 
correspondence with the states of SU(2) IUR of the same dimensions. Such a direct 
match with SU(2) IUR basis states clearly is impossible when considering the CG co- 
efficients coupling discrete unitary, ie infinite-dimensional, IUR of SU(1, l). Thus, up 
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to now, the recognized connection between the SU(1,l) and SU(2) CG coefficients 
coupling discrete unitary IR is the analytic continuation in the representation parameters 
(Holman and Biedenharn 1966, Wang 1970). 

By stepping away from the consideration of individual SU(1,l) and SU(2) IUR to a 
study of the IUR of the tensor product groups SU(l,l)$SU(l, 1) and SU(2)$SU(2) 
defined on one general set of basis states, we can match the limitcd sets of SU(1,l) 
tensor product states appearing in the expansion of a discrete SU(1,l) IUR state with a 
corresponding set of SU(2) tensor product states appearing in the expansion of an SU(2) 
IUR state. The important point is that the two expansions, and thus the SU(1,l) and 
SU(2) CG coefficients, will be identical even if only the limited sets of states involved are 
identical. The most degenerate, discrete IUR of SU(2,2) (Yao 1967, Barut and Bohm 
1970) provide a natural structure in which this can be done. These SU(2,2) IUR have a 
physical significance as the generalized hydrogen atom or dyonium dynamical group 
IUR (Barut and Bornzin 1971, Barut et al 1974). In this physical picture, the SU(1,l) 
and SU(2) CG coefficients turn out to be the basis transformation coefficients relating 
‘parabolic’ to ‘spherical’ basis states, and the index transformations (22) are then just 
the notational transformations of these SU(2,2) states from an SU(1,l) representation 
parameter description to an SU(2) representation parameter description. 

In the construction of our proofs, only the positive discrete series IUR of SU(1,l) 
will be used; a brief discussion of the negative discrete series IUR is included in 0 7. In 
0 2, the encompassing group structure of the most degenerate discrete IUR of SU(2,2) 
is sketched. The SU(2)$SU(2) and SU(1, l)$SU(l, 1) IUR embedded in this structure 
are presented next, in #§ 3 and 4 respectively. In 5 5.1, the CG coefficients and the index 
transformation, along with a brief discussion of phases, are presented. In 0 5.2, the general 
index transformations are derived. These lead, as discussed in 0 6, to SU(2) CG symmetries, 
some of which are Regge symmetries. 

2. Tbe group SU(2,2) 

The group SU(2,2) (Yao 1967) is locally isomorphic to the group 0(4,2), and can be 
generated by the Lie algebra of antisymmetric tensors J,,, where c1 and /I take values 
from the set (1 , .  . . , 6 ) .  J , ,  satisfy the commutation rules 

where gas is a diagonal metric tensor with the elements g,, = g,, = g,, = g,, = - 1 
and g,, = g66 = + l .  The oscillator or boson realization of the most degenerate 
discrete IUR of SU(2,2) can be constructed with the four pairs ( a ] ,  a,), ( a i ,  a,), (bf , b,) 
and (b l ,  b,) of boson creation and annihilation operators satisfying 

If we define the usual Pauli matrices and a matrix C by 

c = io, = ( O ’) 
- 1  0 

6 3  = ( ”, ol = (0 1 0 ’  l )  
6, = ( y  -$ 0 - 1  
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then the generators J,, can be written in a two-dimensional spinor notation as 

where i a n d j  take the values 1, 2, and 3. The most degenerate discrete (dyonium) IUR 
of SU(2,2) are uniquely labelled by the eigenvalues p of the operator S : 

S I $ata-btb) = 3 a ] a 1 + a i a 2 - b : b 1  -.b:b2). (3) 

S commutes with all generators J , ,  of the SU(2,2) Lie algebra (2). The orthonormal 
'parabolic' basis states are the eigenstates of the operator S together with the three 
commuting generators J, , ,  J S 6 ,  J, ,  of the Cartan subalgebra. The diagonalization of 
S ,  J, , ,  J,,, J, ,  is, as can easily be seen by taking their linear combinations, equivalent 
to the diagonalization of the four number operators a l a , ,  ala, ,  bfb ,  , and b i b , .  Thus, 
orthogonal 'parabolic' basis states are simply products of monomials in a ] ,  U ; ,  b: , and 
b i  . When defining the general index transformations, we shall use the number operators. 
We write the 'parabolic' basis states as /,U, m, n, a) ,  where the labels (p, m, n, a) are the 
eigenvalues, in the same order, of the set of operators (S ,  J , , ,  J,,, J 3 J .  The 'spherical' 
basis states will be defined later, in conjunction with the CG coefficients. 

3. The temr product group SU(2)68SU(2) 

The SU(2,2) tensor product subgroup SU(2)@SU(2), which is locally isomorphic to 
0(4), is generated by the subalgebra Ja,, where (a,/?) take their values from the set 
(1,2,3,4). From (2), the generators ofthe two SU(2) groups composing the SU(2)@SU(2) 
are easily seen to be 

Here i ,  j ,  and k take values from 1 to 3. With (J ) i j  = E ~ ~ ~ ( J ) ~ ,  the SU(2) Casimir invariants 
Q E 5' are defined by 

Q E ( J ) ,  = 4 1 gijgk'JikJjf = ( J ) :  + (J ) :  + ( J ) :  

An IUR of SU(2)@SU(2) can be constructed by taking the tensor product of a spin j ,  
with a spin j 2  SU(2) IUR ; a complete set of SU(2)@SU(2) IUR basis states are then : 

~,j lm, j ,m2) = ~ j l m , ) ~ j 2 m 2 )  = N .  j r m l  at j l+"' la~l -"'1N.  1 J m 2  btJ2+"'zbtJ2-"'z 1 2 10) (6 )  

with NjmZ = [ ( J + m ) ! ( j - m ) ! ] .  The action of the raising and lowering operators 
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(Jr)*  = (Jr)l f i(Jr)2, of ( J r ) 3 ,  and of the Casimirs on (6) are 

(Jl)’ljlmlj2m2> = Nil T m l ) ( j l  + m i  +1)Ii‘21jl ,  mi  f 4 j 2 m 2 )  

(J2)’IJ14j2m2> = [ ( j 2 T m 2 ) ( j 2 f m 2 +  1)11’21jlml,j2, m 2 + 1 )  
(7) 

(Jr)31j lm1i2m2> = mrIj imij2mJ 

( J r ) 2  I j i m i j 2m2)  = i A i r  + 1)li 1m 1 j2m2 > *  

Since the states Ij1mlj2m2) are simply products of monomials of the four boson raising 
operators, they are identical to the SU(2,2) ‘parabolic’ basis states Ip, m, n, a), if the 
operators of the set (S, J12,  J S 6 ,  J34) have matching eigenvalues on both states : 

P = j 1  -J2 

m = ml+m2 

n =jl+j2+1 

U = m 2 - m , .  

These relations define the index transformation from the SU(2,2) ‘parabolic‘ stare 
notation to the SU(2) tensor product notation. All SU(2)$SU(2) IUR satisfying the 
condition p = j ,  - j 2  are contained once in one SU(2,2) spin p IUR. 

The alternate SU(2)@SU(2) IUR basis states corresponding to the ‘spherical’ basis 
states are defined by the canonical reduction chain 

(9) 

The SU(2) CG coefficients will satisfy the Condon-Shortley phase convention (Edmonds 
1957) if the SU(2) subgroup generated by (.112,J31, 323)  and the SU(1) subgroup 
generated by J12 are chosen for this chain. The generators of the SU(2) reduction chain 
group are 

SU(2)$SU(2) 3 SU(2) =I SU(1). 

J 2 3  = J l  = (Jl)l + ( J 2 ) l  

J,, = J 2  = (J1)2+(52)2 (10) 

J 1 2  = J 3  = (J1)3+(J2)3*  

The new states I ( j l j 2 ) j m ) ,  transforming as IUR states of SU(2), are related to the tensor 
product states (6) by the unitary transformation defining SU(2) CG coefficients : 

I ( j 1 j 2 ) M )  = 1 (jlmlj2m21(jlj2)jm)IJlmlj2m2) a,,,, +mZ.m’  (11)  

The eigenvalues j ( j +  1) of the Casimir operator Q = J 2  = J : + J i + J :  are constrained 
to the usual range ljl-j21 < j < jl+j2. The set of operators (S,J12,J56,J2), where 
J 2  has taken the place of the generator J34, forms an alternate complete set of com- 
muting SU(2,2) operators. The eigenstates are defined to be the ‘spherical’ basis states 
Ip ,m,n;  j ( j +  1)). The expansion (11) of l ( j l j 2 ) j m )  in terms of the states Ijlmlj2m2) 
can then be written as the expansion of the ‘spherical’ states in terms of the ‘parabolic’ 
states with the help of the index transformation (8): 

(12) 

m m z  

IP, m, n ; j ( j +  1)) = 1 <p, m, n, alp, m, n ;i(j+ l)>lcc, m, n, U). 
a 
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4. The tensor product group SU(1, l)@SU(l, 1) 

The SU(2,2) tensor product subgroup SU(1, l)@SU(l, l), which is locally isomorphic 
to 0(2,2), can be generated by the subalgebra J,,, where (a, p )  take their values from 
the set (3,4, $6). A study of the SU(1, l)@SU(l, 1) Lie algebra reveals that the two 
SU(1, 1) subgroups composing the tensor product group are generated by 

(N1h = $b:a:+b,a,); 

(NJ2 = -T'(bla,--b,aZ), 

(Nl)3 = $bjbl  +ala ,  + 1);  

( N d l  = +@fb:+a,h,) 

(N, ) ,  = -+i(a:b:-a,b,) (13) 1 '  t t 

( N 2 ) 3  = $afa,+b:b,+ 1). 

With the identifications (Nr)i, = fijk(Nr)k, the Lie algebras (13) satisfy the usual SU(1, 1) 
commutation rules (Bargmann 1947) 

[(Nr)ij3 (Ns) ik l  = - i'rsgii(Nrijk ' 

The diagonal metric tensor g:j takes the values g;, = g;, = - 1 and gi3 = + 1, re- 
flecting the local isomorphism of SU( 1, 1) with SO(2, 1). The SU( 1, 1) Casimir operators 
Q = K 2  are defined by 

Q = (K)' = 4 C g'i'g'ik(N)ii(N)jk = ( N ) :  - ( N ) :  -(NI:.  (14) 

The basis states of an SU(1, l)@SU(l, 1) IUR can be constructed by taking the tensor 
product of a k ,  with a k, positive discrete series IUR : 

(15) 

with Nk,' = [ (n+k-  l ) ! ( n - k ) ! ] .  The action of the generators (N)' = ( N ) ,  +i(N), and 
( N ) 3 ,  and of the Casimirs on (15) are 

a t n 2 + k 2 -  lbtn2- kz 
2 IO> t n l + k l - l  t n l - k  

1k1n1k2n2) = 1k1n1)1k2n2) = N k l n l b l  I N k 2 n 2  1 

(Ni)'Ik1nlk2n,) = [(ni F . k i ) ( n ,  Tk1 F. 1)'"Ik1, 1, k , n , )  

(Nz) ' lklnlkznz)  = [ ( ~ 2 + k 2 ) ( ~ 2 T ~ 2 + l ) l " 2 1 ~ ~ ~ , , k 2 ,  n z f l )  
(16) 

(Nri3lkl n 1 k , n , )  

K,ZIkln1'2n2) = kr(kr-l)Ik1n1k2n,). 

nrlk1 n 1 k ~ n , )  

The representation labels 2k, are nonzero positive integers, and the state labels nr can 
take all values from k, to plus infinity in positive integer steps. 

Since the states (15) are also simply products of monomials of the boson raising 
operators, they are identical to the SU(2,2) 'parabolic' states lp, m, n, a )  whenever the 
set of operators (S, J , , ,  J,,, J 3 J  has matching eigenvalues on both states: 

= k2-k1 

m' = k l + k , - l  

n' = n,  +n ,  

IX' = n,  - n 2 .  

These relations represent the index transformations from an SU(2,2) 'parabolic' state 
notation to the SU(1, 1) tensor product notation. 
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The alternate set of SU(1, l)@SU(l, 1) states, ie states corresponding to ’spherical’ 

(18) 

If this chain is to define the SU(2,2) ‘spherical’ basis states (12), then the SU(1, 1) in the 
chain must have its Casimir K 2  equal to  the SU(2) Casimir J 2  (associated with (l l)) ,  
and must contain the SU(1) subgroup generated by J , ,  . The special SU(1,l)  subgroup 
satisfying these demands is the so called ‘transition’ subgroup (eg Kleinert 1968), 
generated by J,,, J,, and J 5 6 .  Its generators are, in terms of (13), 

basis states, are defined by the canonical reduction chain 

SU(1, l)@SU(l, 1) 3 SU(1,l)  3 SU(1). 

J 5 6  = N 3  = + ( N 1 ) 3 + ( N 2 ) 3 .  

The minus signs associated with the ( N , )  algebra reflect the special choice of SU(1,l)  
necessary, so that K 2  = J 2 .  The new states I(k,k2)kn),  with K2 and J, ,  = N ,  diagonal 
and transforming as positive discrete series SU(1, 1) IUR states, are related to the states 
(15) by the unitary transformation defining SU(1, 1) CG coefficients: 

(20) 

The eigenvalues k(k  - 1) of K 2  are k = k ,  + k2  + I ,  where I is zero or a positive integer. 
The SU(2,2) operators S ,  J , ,  , and J , ,  , along with the operator K 2 ,  are diagonal on (20). 
Since J 2  = K 2 ,  the same set of operators which define the ‘spherical’ states (12) is 
diagonal on (20); thus, (20) are actually SU(2,2) ‘spherical’ basis states lp’, m‘, n‘;  k(k - 1)). 
With the help of the index transformation (17), we can write (20) in an SU(2,2) notation 
as 

(21) 

I(k Ik2)kn) = ( k i n  ik2n2l(kik2)kn)lk 1 n 1k2n2) J,, + n2.n. 
nlnz 

IF’, m‘, n’ ; k ( k -  1)) = 1 ( p ’ ,  m‘, n’, a’lp’, m‘, n‘ ;  k ( k -  I))lp’, m‘, n’, a’).  
a’ 

5. The C G  coefficients and the general index transformations 

5.1. The CG coeflcients 

The reason for writing the SU(2)@SU(2) IUR basis transformations (1 1) and the 
SU(1, l)@SU( 1, 1) IUR basis transformations (20) as basis transformations from the 
‘parabolic’ to the ‘spherical’ states in an encompassing SU(2,2) IUR ((12) and (21)) should 
be clear. The SU(2) CG coefficients in (11) and (12) 

( . ~ l ~ l . ~ 2 m 2 1 ( j l j 2 ) j m )  = ( P ,  m, n,  alp, m, n ; j ( j +  1)) 

and the SU(1, 1) CG coefficients in (20) and (21) 

(k ln ,k2n21(k lk2)kn)  = ( p ’ ,  m‘, n’, a’lp’, m’, n ‘ ;  k ( k -  1)) 

are identical if the SU(2,2) states are identical, ie if the SU(2,2) labels p = p’,  m = m‘, 
n = n’, a = a’, and j = k-1 are. Since any IUR of the tensor product group 
SU(1, l)@SU(l, 1) formed from two arbitrary positive discrete SU(1,l)  IUR can be 
accommodated in one of the most degenerate discrete IUR of SU(2,2), we have proved 
in general, that the CG coefficients coupling any two positive discrete IUR of SU(1, 1) 
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are identical to SU(2) CG coefficients. The index transformations relating the SU(1,l) CG 
coefficients’ indices to the SU(2) CG coefficients’ indices are formed from the two in- 
dividual index transformations (8) and (17) by setting the corresponding SU(2,2) 
parameters equal. Thus, the CG coefficients 

(klnlk2n21(klk2)kn) = (jlmlj2m21(jl.j2)jm) 

if the SU(2) indioes are 

j ,  = + ( n , + n 2 + k , - k , - 1 )  

.i2 = ~ n , + n , + k , - k , - l )  

m ,  = +(n, -nl+k,+k, - l )  

m, = + ( n 1 - n 2 + k 2 + k , - 1 )  

, i = k - 1  

m = k l + k , - 1 .  

By transforming the indices of an SU(2) CG coefficient (Edmonds 1957, p 45, equation 
(3.6.11)) with (22), the SU(1, 1)  CG coefficients can be derived. We find 

(k 1 n 1 k,n,l(k ,k,)kn) 
= ( -  1)”’-k’[(2k - l)(k - k, - k , ) ! ( k  + k, - k, - l)!(k+ k ,  - k, - l ) !  

x (k+ k, + k ,  - 2)!(n- k ) ! ( n l  - k,) ! (n ,  + k ,  - l)!(n, - k,)! 
x ( n 2  +k, - l)!/(n+k- I ) ! ] ” ~  1 ( -  l )b[f l ! (k-kl  -k, - p ) !  

x (n l  - k, -fl)!(n- k- n ,  + k, + fl)!(2k1 +p-  l)!(k-- k, + k ,  - p- I ) ! ] -  
P 

(23) 

Apart from the phase factor ( -  l ) ” - k l ,  our CG coefficient agrees with the result of 
Sannikov (1967). The phase factor has its origin in the particular choice of SU(1,l) 
canonical chain reduction subgroup. The minus signs associated with (iVl)l and (NI), 
in the SU(1,l) generators (19) are responsible, as we have checked by carrying through 
Sannikov’s calculation with our phase choice. These minus signs, and thus our phase 
factor, can be removed by picking an alternate pair of SU( 1 , l )  and SU(2) reduction chain 
subgroups. For example, the SU(1,l) subgroup generated by (J56, J , , ,  J 3 6 )  has the 
desired plus signs in its generators. However, its complementary SU(2) subgroup, a 
subgroup with J 2  = K 2  and J ,  = J , , ,  is the SU(2) generated by (J,,, J14,J24), which 
has minus signs associated with its and (J1), (see (10)). The SU(2) generators, thus, 
do not satisfy the Condon-Shortley phase conventions (Edmonds 1957); the SU(2) CG 
coefficients, corresponding to the SU(1,l) CG coefficients without a phase factor, have the 
extra phase factor (- lY1-’”*. The algebraic framework of the SU(2,2) IUR, thus, forces 
this complementary phase behaviour on the CG coefficients. 

5.2. The general index transformations 

Our discussion of the index transformations has been concerned thus far strictly with 
transforming from an arbitrary SU(1,l) CG coefficient to an SU(2) CG coefficient. The 
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reverse, from an arbitrary SU(2) CG coefficient to an SU( 1,l)  CG coefficient needs more 
care, as different domains of the SU(2) indices need different index transformations. 
We can see this most simply by directly comparing the powers of the monomials of the 
boson creation operators in the SU(1, l)$SU(l, 1) states (15) with those in the 
SU(2)$SU(2) states (6). The representation defining conditions n, 2 k ,  2 4 for the 
SU( 1,l) IUR, restricts the domains of the SU(2) IUR parameters for which the states (15) 
and (6) can be identical. For identical states, the inequalities imply that the exponents 

n , + k , . - l  = j 2 + m ,  2 j l - m ,  = n , - k ,  

n 2 + k 2 - 1  = j l + m l  2 j , - m ,  = n z - k 2 .  

Defining p = j ,  - j 2  and m = m ,  + m,, these inequalities can be written as 

m m , + m 2  2 1p1 2 0. 

This is the SU(2) parameter domain for which the index transformation (22) is valid. 
For other SU(2) representation parameter domains differently constructed SU( 1,l)  
tensor product states are needed, so that different exponent associations than in (24) 
must be made. The SU(1,l) Lie algebras (13) are invariant under the interchange of 
(bf , b,) with (at, a,), and of (a], al)  with (b i ,  b,) ; consequently, the exponents of the 
boson creation operators bf and at ,  and of a ]  and bi , can be interchanged in the SU( 1,l)  
tensor product states (15) without changing the Lie algebra definitions (16). With the 
possibility of permuting the exponents in (15), SU(1,l) tensor product states can be 
constructed for all SU(2) parameter domains. We find four inequivalent SU(2) parameter 
domains : 

m 2 IpL p = lpl > m -IpL - p  = Ipl 2 m 2 -1pL m < -/PI. (25) 

The index transformations can, as is illustrated by (24), be directly read off from the 
exponents. In the sequence of parameter domains adopted in (25), the general index 
transformations are 

j ,  + m ,  = (n, + k 2 -  1, n2 + k 2 -  1, n2-k2, nz -k2) 

j ,  - m l  = (n, - k , ,  n 1  + k ,  - 1, n, - k , ,  n, + k ,  - 1) 

j z + m 2  = (n, +k, - 1, n, - k l ,  n 1  + k ,  - l ,n ,  - k l )  

j ,  - m 2  = (n2-k,,  nz- k,,  n 2 +  k 2 -  1, n2 + k 2 -  1) 

j = k - 1 .  

The first column corresponds to the domain m 2 Ip1, and is the index transformation 
(22). All of these index transformations lead to the same SU(1,l) CG coefficient, since 
the SU(1,l) Lie algebras are invariant under the permutations. 

6. The CG coefficient symmetries 

By branching from one SU(1,l) CG coefficient with the four index transformations (26) 
to four identical, but differently labelled, SU(2) CG coefficients, we are led to six SU(2) CG 
symmetry transformations. The two symmetry transformations from the SU(2)parameter 
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domains m 2 Id to -1,uI 2 m, and from ,u = ],ut 2 m 2 --/PI to - p  = 1,uI 2 m 2 -[PI, 
are equivalent to the reversal of the coupling order of the spinsj, and j ,  and the trans- 
formation of m, and m, into -m, and -m2 in the SU(2) CG coefficient. This is one of 
the standard symmetries (eg Edmonds 1957). The four symmetry transformations from 
the SU(2) parameter domains Iml 2 lpl to the domains Ipl 2 m 2 -I,uI, however, are 
not any of the standard symmetries, but are among the abstract algebraic symmetries 
discovered by Regge (1958). On writing the SU(2) CG coefficients in terms of the Regge 
square symbol, these transformations are seen to be equivalent to the symmetry trans- 
formation corresponding to the interchange of the symbol’s rows with its columns, ie 
symmetry c of Regge’s original paper. 

In terms of the boson realizations, the origin of these symmetries lies in the invariance 
of the SU(1,l) Lie algebra relations (16) under the permutations of the exponents of the 
boson raising operators in each SU(1,l)  IUR of the tensor product state (15). From a 
model-independent viewpoint, these permutational invariances are equivalent to the 
invariance of the Lie algebra relations (16) when the Casimir invariant k, is replaced by 
1 - k,; the SU(1, 1) CG coefficients are then, of course, also invariant with respect to this 
replacement. We can thus say, that our SU(2) CG coefficient symmetries, including 
symmetry c of Regge’s paper (1958), are a consequence of the invariance of the inter- 
relating SU( 1, 1) CG coefficients under the replacements of k, by 1 - k,. 

7. The negative discrete series 

Our discussion has dealt exclusively with the positive discrete series IUR of SU( 1, 1). 
Our algebraic frame is, however, equally well suited for treating the negative discrete 
series IUR. The SU(2,2) Lie algebra (2) can be converted into one appropriate for the 
negativediscreteruff by simplymultiplying the bosondefinitions ofthe SU(2,2)generators 
J, ,  in (2) with - 1. This operation leaves the SU(2)@SU(2) subalgebra invariant and 
affects only the SU(1, l)@SU(l, 1) subalgebra. The SU(1, 1) subalgebras (13) composing 
the tensor product have their boson definitions of ( N , ) ,  and of ( N J 3  changed into their 
negative. The effect of this replacement is that the eigenvalues of (Nr)3 on a boson 
creation operator basis state are negative, and that the boson definitions of the raising 
and lowering operators (N,) * are, correspondingly, interchanged. The subalgebras 

have become those for negative discrete IUR. Furthermore, the Casimirs are un- 
changed, so that the positive discrete series tensor product states I k , n , k , n , )  (15) are 
now the negative discrete series tensor product states Ik, , - nl, k,, - n,), as labelled 
by (16). Since the Casimir of the spherical basis states is unchanged, ie K 2  = J2, the 
boson definitions of the positive discrete series IUR states I(k,k,)kn) and the negative 
discrete series states I(k,k,)k-  n) are unchanged. Except for notation, the positive 
discrete states and the negative discrete states are identical, so that the SU(1,l) CG 

coefficients defined by (20) are the negative discrete CG coefficients also, and thus 
identical to SU(2) CG coefficients. 
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